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I. INT RODUCTIO N

Problems involving solidification or melting of materials  are of con-

siderable importance in many technica l fie ld s such as casting processes ,
food freezing,  c rystal growing,  c ryosurgery,  therma l energy storage , and

satellite temperature control app lications , to mention a few . Heat conduction
problems in volving freezing or melting are comp licated due to the coup ling

of the tempe rature fi e ld with the rate of propagation of the phase boundary

between the soli d and liquid phases . Only a few exact analytical solutions

have been found , e .g., Neumann ’s solution to the one-dimensional Cartesian

case reported in Carslaw and Jaeger .
1 Most avai lable solutions are obtained

by analytical approximations and numerical methods. The one -dimensional

problem for simple shapes such as p lates , cy linders , and sphe re s has been

treated by various analytical te chnique s , e .g . ,  the heat balance integral
2 . . 3method by Goodman , the variat ional  method by Biot , the method of moving

heat sources by Rosenthal4 and the method of polynomial approximation by
Megerlin 5 and Un.,6 London and Seban 7 obtained exact c losed-form solutions
by assuming that the heat capacity of the solidified or me lted substance is

neg lig ible relative to the latent heat of fusion. This assumption great ly

1Carslaw , H.S., and Jaeger , J . C ., Conduction of Heat in Solids, 2nd ed .,
Oxford Uni versi ty Press , London and New York , 1959.

2Goodman , T. R., “The Heat-Balance Integral and Its A pp lication to Problems
Involving a Change of Phase , “ Transactions of ASME, Vol . 80 , 1958 ,
pp. 335-342.

3Biot , M. A ., and Daughaday, H ., “Variational Ana lysis of Ablation, II

Journal  of Aerospace Sciences, Vol . 29 , No . 2 , 196 2 , pp. 227-228.
4Rosentha l, D., “The Theory of Mo ving Sources of Heat and Its A pp lication
to Metal Treatments,” Transactions of ASME, Vol. 68, 1946 , pp. 849-866 .
5
Megerlin , F., “Geometrisch eindimensionale Warmeleitung beim Schmelzen

I 
Erstarren, “ Forsch. Ing. -Wes ., Vol. 34, 1968, pp. 40-46 .

• °Lin , S., “An Analytical Method for Solving Geometric One-dimensional
Freezing or Melting Problems,” ASME Paper No. 73-WA/HT-33.

London , A . L.,, and Seban, R. A ., “Rate of Ice Formation, “ Tr ansactions of
the ASME, Vol. 6, 1943, pp. 771-778.
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simplifie s the mathematics  but limits the app licabil i ty of the solution to a
certain class of prob lems as discussed be low . Numer ica l  solutions to the
one-dimensional  phase-change problems for simp le shape s such as s lab s,
cy linders , and sp heres are too numerous to mention here.  References  8 and

9 are  good s tar t ing  points .

Mult idimensional  phase-change problems are very comp lex to solve
ana lytically eve n for hig hl y idealized si tuations such as those treated in

12Refs . 10 and 11; the common approach is to use numerical  methods . How-
eve r , severa l  seeming ly multidimensional problems can be closely approxi-
mated by one-dimensional  technique s if a prope r coordinate system is used so
that the physical  boundaries of the system can be made to coincide with the

13 14 . . . .coordinate surfaces .  ‘ The purpose of this report  is to develop a uni f ied
approach in the use of orthogonal curvi l inear  coordinates to conduct prob-
lem s involving phase-change and to present  examp les in severa l  of the most
common coordinate systems. The c losed- fo rm express ions  obtained g ive

the solidified (or me lted) f ract ion , inte r face posit ion , boundary temperatures,
and heat fluxes as a function of time for elli ptic cy linder and sp heroidal  phase-
change containers of various eccentricities.

8Ehr l ich , L. W ., “A Numerical  MethoG of So lving a Heat F low Problem with
Moving Boundary, ” Journal  of ACM, Vol . 5, 1958 , pp. 161-176 .

9Murray , W. D ., and Landis , F., “Nume rical and Machine Solutions of
Trans ien t  Heat-Conduct ion Problems Involving Melting or Freezing , “

Transact ion of ASME, Vol . 81, 1959 , pp. 106-112.
10 

‘IPoots , G. , An A pproximate Treatment of Heat Conduction Problem In-
volving a Two-Dimensional So lidification Front , “ Inte rnational Jou rnal  of
Heat and Mass Transfe r, Vol . 5, 196 2 , pp. 339-348.

11Rathjen , K .A ., and Jiji , L.M., “Heat Conduction with Melting or Freezing
in a Corner , “ Journa l of Heat Transfe r, Trans .  ASME, Series C , Vol . 93 ,
1971 , pp. 101-109.

12Shamsundar, N ., and Sparrow , E . M ., “Analysis of Mult idimensional
Conduction Phase Change Via the Entha lpy Model , ” Journal of Heat Transfe r,
Trans .  ASME, Series C , Vol . 97 , 1975 , pp. 333-340 .
Yovanovich , M. M., Advanced Heat Conduction, Hemisphere Publishing

• Corporat ion , Washington , D .C ., 1978 .
‘4Moon , P., and Spencer , D.E ., Field Theory for Engineers,  D. Van Nostrand

Company, Inc ., Princeton , New Jersey,  196 1.
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II. ANA LYSIS

A . CARTESIAN COORDINATES

Consider f i rs t  the relative ly straightforward case of idealized freezing

between two in finite paralle l p lates as shown in Fig . la . At time t 0 the

content between paralle l plate s is assumed to be a pure liquid at its freezing

or melting temperature . As the outer walls are coole d by contact with

anothe r medium at T0, the solidification boundary moves inward toward

smalle r values of x. The e ffects of supercooling , density changes due to

change of phase , convection between the two phases , and temperature drop

through the container wall are neg lected. Let Q be the heat rate removed

from the surface at x through a heat t ransfer  coefficient h . If the sensible
0 0

thermal energy stored in the solidified layer is small compared to the latent-

hea t -of - f reez ing ,  heat flowing from the solid-l iquid interface at x is also

equal to Q and is g iven by
T - T

= 

h A ~~~~ 
_ _ _ _ _  

(1)

This heat flow provides extraction of the latent heat of fusion necessary for

freezing at the surface x

Q = L ã~ 
(x - x)Ap (2)

where (d/dt) (x 0 -x )Ap  is the mass rate of solidification at the growing surface

kg/s . and L is the latent heat of fusion cal/gm. Whe n Eqs . (1) and (2) are

equated to e liminate Q

• 

. T f~~~~T 
dt = - (

~
-_ + 

X -  

X )  dx (3)

-7-
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p
where A A for Cartesian coordinates . Equation (3) can be readi ly non-

dimensional ized by employ ing the d imens ionless  d is tance  coordinate

x~ = x /x  � 1. 0 and the Biot number Bi = h x /k  as follows :
0 0 0

k(T - T )
dt = - + i) - 

x i  
dx~ (4)

For the case of inward sol idif icat ion , Eq. (4) can be integrated from ~~
:

at t 0 to x =x  at t;  the resul t  is

k(T  - T )t / •\ /fr 
2 

° SteFo = ( -h— + 1) f i  - - ~~
- (i  - x~ ) (5)

pLx \
i / \  / /

0

where the dimension less t ime parameter  is the product of the Stefan number

Ste C(T fr  - T )/L  time s the Fourier  number Fo = ( k / p C L 2 )t . The Ste fan

numbe r is the ratio of the specifi c heat effect  to l~’tent heat . For heat storage

app lications it is sometimes more convenient to express Eq. (5) in terms of

the f rozen fract ion F, which is defined by F = (x0 - x ) / x 0 = 1 - x

F F2
SteFo ~~~

— + —
~~

— (6)

The wall temperature his tory can be readily obtained by equating the heat

flow through the outer surface h A 0 (T
~~ - T0) to Eq. (1) and rear ranging

T - Tw o 1 1 1
T - T  = . * 1+ B i F  (7)

f r  o 1 + B i( l  - x 
+ 2Bi 2SteFo

-9-
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The p lotted resul t s from Eqs. (6) and (7) wil l  be presented later when

freez ing  in elliptic cy linders  is compared with oblate spheroids of hig h eccen-

t r ic i ty .  Note that the boundary condition temperatu re T0 in Eq. (2) could

be a function of time without comp licating the integrat ion signif icant ly.

C losed- fo rm solutions are st i l l  obtainable , as long as the assumed function

can be in tegra ted .

Equations (6) and (7) are also app licable for the case of me lting , as

shown in Fig. ic , the only d i f fe rence  being that in thi s case F is the me lted

fract ion and T > T > T . The case of freezing in an outward direction ,
o w fr

Fig . ib , can a lso be similarly de rived by equating the heat extraction rate

to the mass rate of f reezing

T - Tf r  ° = p AL~~~ (8)
x - x  dt1 o

h A ~~ kA
0

Using the same nondimensional  terms as before and integrat ing f rom x ’ 1

at t 0  to x x at t result s in

SteFo = - 1)(x
* - + - (9)

whe re x x/ x 0 ~ 1. 0. This equation is valid for outward freezing or melting
(see Figs . lb and Id).

B. GEN E RA LIZED COORDINATES

Before proceeding with formulation of the problem in genera l  curv i l inear

coo r di na tes , a. gene ra l  express ion  for the thermal  res i s tance, comparab le to

the x / k A  for Car tes ian  coordinates , is required . Special coordinate systems

are used because it is sometimes possible to make the isothe rmal surfaces

of a given heat conduction proble m coincident with coordinate sur faces , thus

making  the t empera ture  f ield one-d imens iona l  in that coordinate system , e .g . ,

the fi e ld between two concent r ic  cy linders in c i rcular  cy linder coordinates.

- 10-

——-----— -_— —- -  
___ _ _ _ ____ ___ T __ _

~
__ _ _

~
_
~

__
~

__J___ • ~~~~~~~~~~~ .~



Consider the orthogonal curvilinear coordinates shown in Fig . 2. The

general line element ds is the diagonal of the infinitesima l parallelepiped

with faces that coincide with the planes u 1, u2, or u3 = const and is give n by

2 2 2 2ds g 1du 1 + g 2du 2 + g 3du3 (10)

which can be considered as the definition of the met ric coefficients g 1, g 2, g 3
that may be functions of u1, u2, and u3. When the Cartesian coordinates

x, y. z can be expressed in terms of the new coordinates, u1, u2, u3 
by the

equations x = x(u1,u2,u3) ,  y = y(u 1, u 2, u3), and z z(u 1, u2, u3 ), the metric

coefficients can be readily generated by means of the following formu la : ~~~‘ ~~

g~ = (
~~~~

)
2 

+ ( ~~~_ )
2 

+ (
~~~~

)
2 

i 1 , 2 , 3 ( 11)

The infinite simal volume is give n by

dV = \[g du 1du 2du 3 (12)

where ..J~ 
= ~Jjj g 2g3 . The elemental surface area orthogonal to the

u 1-direction is

dA 1 ~,/g 2g 3 du 2du 3 (13)

Simila.r expressions can be written for the areas in the u
2- 

and u
3
-directions.

The heat f low/unit  time through this surface into the volume e lement is

dQ = - kdA = - k -~-~- du du (14)1 l d s 1 g1 du1 2 3

The net rate of heat conduction out of the volume element is

~~ — 
(k~~~ ~~~

i_) du 1du 2du 3 ( 15)

L ~~~~~~
-

~~~
- - 

—

~~~~

-

~ --



V 
41= 21T/3

41=7 r2  / ~~~~~~~~~~~~~~

du3 ~~~~~~~~~~~~~~ 

2 

_______
___
., /(

~~

/
/

/

/ 
2

ds du 2 .L i~ ’<
du~ ° I T7~ 

~~~ 

~~~~
..

/ _
IN F I N I T E S I MA L  VO LU M E  111111 

____

ELLIPTIC CYLINDER

z

4i 9 2,r/6

/ 8-8=o / / 
8 8= 2 7T/6

~~ / 
e~ 2 / 8= ~~/4

77 .255 6 = 2 w~3

~~~~~~~ 
11 7, 

~~

~ b ~~~~~~ C —ø.~

OBLATE SPHEROID *

PROLATE SPHEROID

Fig. 2 . Orthogonal Curvi l inear  Coordinates
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Dividing by volume element dV ..[g du 1du2du 3 and equating to zero results in

Laplace ’s equation in the u 1 direction

L. —~-- (k~ L~. ~~L\ = 0 (16)
\rg du 1 \ g 1 du

1/

Integrating once, the result is

(17)
g1 du 1 1

At this point the thermal conductivity is assumed to be constant and

the boundary conditions are taken as

T T 1 u 1 a

T = T 2 u 1 = b (18)

Integrating Eq. (17) between these limits and solving for C1 
results in

k(T 2 - 
T 1)

C 1 = b (19 )
g 11 f~~ =- du j

Substituting in Eq. ( 17) and solving for the temperature gradient result s in

dT T 2 - T 1 g 1— =  — (20)du b1 g 1
f ~~-du 1

The heat flow/unit time along the u1-direction can be obtained by substituting
in Eq. (14) and integrating between appropriate limits along u2 and

du du
= k(T

1 
- l’z ) ./• 

f b 
~ (21)

u u g 12 3 
J~~~_ d u

1
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The thermal  resistance R is defined as the temperature  drop ove r the
total heat flow rate ; thu s

du du 3= k f f b 
2 (22)

~ ~2 3 I — d u
j~~~ flg 1
a

Yovanovich 13, 15 
derived this equation for the more general  case of thermal

conducti vity as a linear function of temperature and showed that Eq. (22) is
va lid if k represents the arithmetic average conductivity. He also specialized
Eq. (22) for the most frequently used coordinate systems .’5

Consider a phase-change mater ia l  (PCM) confined between two iso-
the rma l surfaces  of a general  orthogonal coordinate system at di f ferent
tempe rature le vels with phase change taking p lace inwardly from a la rger
outer surface to a smaller inner surface. A heat balance similar to Eq. (3)
for the Cartesian coordinate case can be written as follows :

-1 pL~~~- (V - V) (23)
/ ~ ~~ du.du 0

+ ‘k “ ~I 3 ~~— h A  ( J J  b
ii. u k 

f ~~~- .du1

where all assumptions made in deriving Eq. (3) app ly for this equation as well .
When phase change proceeds in an outward direction , from the smalle r area
toward a larger area , the rig ht-hand side of the equation is changed to pLdV/dt.
Equation (23) will be specialized and solved for elliptic cy linder , oblate
spheroidal, prolate spheroidal , and bicy lindrical  coordinates .

‘5 Yovanovich , M.M. , “A Gene ral Expression for Predicting Conduction
- 

• Shape Factors , “ AIAA Pape r No . 73-12 1.
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• C. E LLIPTIC CYLINDER COORDINATES (77, 9, z)

Phase change conduction problems in or around elli ptic cy linders can be 
• -enormously simplified by using elli ptic cy linder coordinates as shown in

Fig. 2. The coordinates are obtained by taking an orthogonal family of
confocal e llipses and hyperbola s in a p lane and translating them in the
z-direct ion.  The coordinate surfaces of interest he re are ellipti c cy linders
(17 = const) .  The relations between the elliptic and Cartesian coordinates are

x a coshfl cos~l’

y = a sinh77 sin lP

Z Z  (24)

The metric  coefficients can be easily derived by the use of Eq. (11)

2 2 2 ,g 77 g~, a cosh 77 - cos ~~ = (25)

From Eq. (24) it can be seen that b = a coshi7, c a sinh77 and fl = tanh~ ‘c/b .
The therma l resistance between two ellipti c cy linders is readily obtained by
Eq. (22) or taken directly from Refs . 13 or 15.

77 -7 7
(26)

- - The heat ba lance equation is

Tf - 

- 
= pL ~~ (V - V) = - PL (27)

h A  + 2irtk

The area A0 can be computed from Eq. ( 13) as follows :

!Zir h r/ a 
_ _ _ _ _ _

A 0 ff  i/g~,g
’d~i’dz = 4 ff a Icosh Z

77 - cos 2
~ ’dc1’dz (28)
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Lett ing ‘,l’ = 90 - 4, it can be shown that

A = 4at cosh77 E(17 ) (29)

where E (770) is the complete elli ptic integral of the f i rs t  kind tabulated in most
mathematical  table s and shown in Fig. 3 for ease of reference.  The expres-
sion for the volume V can be calculated from Eq. (12) by tr i ple integration.

77
V 4a 2 f  f  f  (cosh 2

l7 - cos 2
~i’) d77d~Pdz ~~a21 sinh2 77 (30)

Differentiat ing with respect to time and substituting the heat balance equation
becomes

k(T - T ) 77 -1 7
pLa2 

° dt - 
[4aLh co~ h17 E( 17 ) + Z nj  

]
~~~~4 0 s ~~277th7 (31)

For the case of inward solidification , the limits of integration are from
? 7 = ? l a t t = O t o l 7 = 7 7  a t t = t

k(T ir - T ) t  
- 

~~~ b )
2 

- 1 
+ ~o I b 2

pLc 2 - 
4Bi cosh 77 E (77 ) 2 [ c -

77~ ~0

f  cosh2y~dvj - 
[(

~~
)

2
..
1]f ~~cosh277d77 (32)

whe re the semirn inor axis c has been used to define the Biot number Bi h c/ k .
0The term on the left-hand side of the equation is the product of the Stefa n and

Fourier numbers . Performing the integrations shown finall y resul ts  in

- 16-
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SteFo = 
k(T f - T ) t  

= 8Bi cosh;E(~ 0 ) (sinh277 - sinh2fl)

- 
1 - 1] (277 sinh277 - 277 sinh277 - cosh2fl

+ cosh2 l7) (33)

Since b = a cosh77 and c a sinh l7, it can be easily shown that

I a  b / c + 177 = ~~Ln b,c - 1 (34)

a = 1b2 
- c2 = c ~~ (b )

2 
- 1 (35)

The wall temperature his tory can be obtained by equating the heat flow through

the surface h A ( T  - T )  to the le ft-hand side of Eq. (27) and rear rang ing;

the result is

T - T  • / 2 ~_ l

T f - T: 
= 1 + (77~ 

- 77)coshT7 E( 77 ) V(~
) - 1 j (3 6 )

This ratio can also be interpreted as the normalized heat fi’ow rate that can be

H extracted from the PCM during freez ing  or the heat flow rate that must be

introduced to achieve a given percent of fusion.  Figure  4 shows the variation

of the dimensionless  wall temperature and f rozen  fraction F as functions of

the dimensionless  time parameter  SteFo. The f rozen  fraction is re lated to

the 17-coordinate by

V - Vo 
- 

si nh2 ?7
- V — - s inh2l7

0 0

-18-
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As c/b  approache s unit y, the resul ts  approach the limiting case of a c ircular

cy linder derived by London and Seban. 7 In te rms of the symbols used in

this  repor t , the c i rcu la r cy lind e r results a r e

Ste Fo = + 

(~~ _ + ~~)(~ - r *2) (38)

whe re r ’ = r / r  ~ 1.0 and the frozen fraction F 1 - r . The dimensionless

wall t empera ture  is given by

T - Tw 0 _ 1
T - T  • af r  o l - B l .Lnr

The resul ts  for a slab , Eqs. (6) and (7) ,  are also shown . The case for

c /b  0 , 01 , not shown , is closely equa l to the c/b = 0. 1 case; thus , the
s lab resul ts  do not provide a good approximation for e lli ptic cy l inders  of
high eccentricities . Note that for app lications such as energy storage or
close temperature  control , where a low temperature  difference is required
throughout the PCM , elli ptic cy linder containers  provide a better choice than
circula r cy linders as seen by comparing the c/b  = 0. 9 and cy linder results
in Fig. 4 . The effect of Biot numbe r on elliptic cy linders of moderate

eccentricities is summarized in Fig. 5. For applications where low tempera-
ture differences are required , Biot number should be kept as low as possib le
within the constra int  of being able to achie ve comp lete phase change in the
allocated time span. The effect  of eccentr ic i ty  c/b on the time required for
complete solidification and the corresponding dimensionless wall tempera-
ture is shown in Figs . 6 and 7. Low Biot numbers and c/b ratios result in
small temperature differences during the phase-change process;  however , the
corresponding times for comp lete phase change are re la t ively larger . When
the Biot numbe r is suff iciently hi gh , a relative ly large temperature difference
develops across the PCM for all c /b  va lue s .
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For phase-change  problems in an outward di rect ion where 17 >17 , it

can ~e shown that the dimensionless time to reach a give n position 77 is

obtained by p lacing a negat ive  sign on the f i r s t  term onl y of Eq. (33) .  The

wall  t empera ture  of the inner boundary Tw can be calculated f rom E q. (36) if

- 77) is changed to (i~ - 7J ~ ) .  The resul t ing express ion can be used to

estimate the rate at which a phase-change front  would move into the ha l f -

space above the x-ax is  from a s t r i p of length 2a located on the x-axis , which

is assumed to be insulated everywhe re else.

D. OBLATE SPHE ROIDA L COORDINATES (17, 9 , 1/’)

The oblate sphero ida l  coordinate system is generated by taking an

o rthogona l family of confocal  elli pses and hyperbolas and rotating it about

the mino r axis of the elli pses as shown in Fig. 2 . The 77 const solids are

called oblate sphero ids . When 77 0 , the spheroid degenerate s into a flat

dis k o f radius a , The relations between oblate spheroidal  coordinate s and

Cartesian coordinate s are

x = a cosh 77 s in9 cosl/~

y = a cosh77 sinO sin1/~

z a sinhfl cosO (40)

The met r ic  coefficients  can be easily derive d by using Eq. ( I l )

2 2 . 2
g 77 

= g
9 

= a (cosh 77 - sin 9)

2 2 . 2
= a cosh 11 sin 0 (41)

From Eq. (40) the semimajor axis is b = a cosh 77 and the semiminor axis is

c a sinh77 from which 77 = tanh 1c /b .
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• The therma l resistance between two ob late spheroids can be obtained by
performing the integrations indicated in Eq. (22) or by using the result s of
Ref . 15 directly

tan ’(sinhi7 ) - tan 1(sirih i~)
R 4irka ( 4 2 )

where 77 <7 7 for the inward solidification case. The heat balance equation
can now be wri t ten as before

T - Tfr ° 
-1 = - p L -~J (43)

tan (sinhlj ) - tan (sinhi7)
h A  + 4irka

0 0

• The area A can be computed from Eq. (13)

7T/ 2
A = 4lra2cosh 2

77 f sin 
\fl  

- 

(C05~~
2

770) 
sin 2 ød9

= 47ra2 cosh 2
77I (77 ) (44)

where the definite in tegral  I~~(77 ) is p lotted in Fig. 3. Volume V can be found
by integrating Eq. (12)

V = 
4~ a 3 

(sinh 77 + sinh 3
~~) (45)

Differentiat ing with respect to time and substituting in Eq. (43) above , to-

gether with Eq. (44), give s

-25- .
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k(T
f -T ) t  

= {(~
) 

h2
~~~I ( ~~~) 

+ - 1] tan l (sinh 77
)}

. 
f (cosh 3

77

- cosh77)d77 - - ‘1 f tan ’(sinh77)

• [co5h
3

77 - ~~
- Cosh Il] dq (46)

The integ rations shown on the ri ght -hand side of the equation can be carried
out in closed form with the following final result:

SteFo = 
~~~~~~ 

1 
+ - 1}tan l (sinh77 )

cosh 7 7 1 ( 7 7 )

- - 1J12 (47)

where

I~ = -~~~(sinh3fl  + sinhl7 - sinh3l7 - sinh77)

-

- 
- 12 = r~

. [(sinh377 + sinhl7 )tan 1(sinh l7 )

- (sinh3fl + sinhl7) . tan ’(sinh~~)]

- -~~- (coshZfl - cosh2fl)

As in the elli ptic cy linder case , the Biot number is defined in terms of the
— semiminor  axis c which is related to a by a = Jb2 

-
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The wall temperature hi story can be obtained by equating the heat

flow through the outer surface h A (T - T ) to the left-hand side of
0 0  W 0

Eq. (43) and rearrang ing ; the result is

T
1

-T 
= + Bicosh

Z
l 7 I( ?7)[tan

l
(sinh77 )

- tan l
(sinh77)] . - (48)

Figure 8 shows Eqs. (47) and (48) plotted for Bi 1.0 for oblate spheroids of

c/b rat ios of 0. 9, 0. 5, and 0. 1. The frozen fraction F is related to the

77-coordinate by 

- . 2
- ° - 1 slnh77 cosh 77 4

o sinhfl cosh 
~~

As c/b approaches unity, the results approach the limiting case of a sphere

derived in R ef .  7. In terms of the symbols used herein , the sphere results

are

SteFo = 

~~~~~~~~~~ 

l) (l - r *3) + ~~(i~~ r *Z) (50)

where r~ r / r  � 1. 0 and the frozen fraction F 1 - r ’ . The dimension-
0

less wall temperature is given by

T - T  -1

T1 - T  = 1 ~~~~~~~~~ i) (51)

The case for c/b = 0.01, not shown, is almost equal to the c/b 0. 1 case ;

thus the s lab results do not provide a good approximation for disc like oblate

spheroids of high eccentricities. For applications where a low temperature
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• d ifference is required throughout the PCM , oblate spheroida l coordinates
provide a bette r choice than sp he re s . The effect of eccentricity c/b on the

- time required for comp lete solidification (i~ = 0) and the corresponding
dimensionless wall temperature are qualitative ly simila r to the calculated
results for the elli pti c cy linder case shown in Figs . 6 and 7.

For phaEe-change problems in an outward direction where 77> 
~~~~~~ 

it
can be shown that the dimensionless time to reach a given position 17 is
obtained by p lacing a negative sign before the f i r s t  term, inside the bracket ,
of Eq. (47). The wall temperature of the inner bounda ry T can be calcu-

lated from Eq. (48) by p lacing a negative sign in front of the second term
inside the brackets . The resulting expression can be used to estimate the
rate at which a phase-change point would move into the hal f -space above the
x-axi s from a circular disc of radius a , located on the x-axis , which is
assumed to be insulated everywhere else.

E. PROLATE SPHEROIDAL COORDINATES (17, 0,1/’)

The prolate spheroidal  coordinate system is generated by rotating an
orthogonal family of confocal ellipses and hype rbolas about the major axis
of the ellipses as shown in Fig. 2 . The prolate spheroids , 17 constant solids ,
vary in shape from nea r - spher ical  to thin rod s of finite length. The rela-
tions between prolate spheroidal coordinates and Cartesian coordinates are ’3

x = a sinhl7 s in9 cos1/~

y = a sinh 77 s inG sin l/1

z = a cosh~ cos9 (52)

The metric coefficients can be easily derived by using Eq. (11)

2 . 2  . 2g
77 

g
9 

a (sin i~ + sin 9)

2 . 2  .2
g
1/, 

= a Sm 
~1 

sin 9 (53)
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- The the rma l resistance between two prolate spheroids can be obtained by
- using Eq. (22) or by using the result of Ref. 15 direct ly.

tn[ tanh(ii /2 )  - Jn[tanh(77/2)]
R = 4lTak 

(54)

whe re 7 7<  77~ for the inward solidification case. The following derivation

proceeds in a simila r manner to the oblate spheroid case , namely, writing

the heat balance equation and substituting the expressions for A 0 and V

which are functions of 17 only. The dimensionless form of the heat balance

equation is

k(T f~~~~TØ )t 
= 

{ 

(
~

) 
flh

~ 77:Ip (
~ o ) 

+ {(
~~

)
2 

~~~ 
Ln {tanh (flo /2 1

- 

- - 1112 (55)

whe re I~ and 1
~ 

are two integrals that can be integrated in closed form as

I shown below:

11~
= f (sinii~ii + -

~~~ sinhll)dZl = -j -~~(cosh3fl - cosh3l7 - coshl70 + coshl7)
- 

(56)

‘7°
- 

I~ = f ln {tanh ( 17/2)] sinh3l7 + ~~
- sinh’7)d ’7

17

= -
~~~~~ In[tanh ( 17/2)](cos3 l7 - coshl7 )

- -j~~ 
In[tanh (77/2) 1(cosh3l - coship )

- -j~~
. (coshZl70 

- cosh2ll ) (57)

L -fl-—- - 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

_______



The term I~ (17~) is a definite integ ral required to define the surface area of a

prolate spheroid . Its reciprocal is plotted in Fig. 3 as a function of 17. The

Biot number is defined in te rm s of the semiminor axis c which is re lated to a
1 2  2

by a  v b  - c

i~~~ wall temperature can be obtained in a similar manner to the oblate

spheroi’.i case; the result is

T - T  2 tanh(17 /2) ~

T fr - T , j 1 + Bi sinh 2
7i0I~~O70) \J(~.) - 1 . [In tanh( 17/2) (58)

Figure 9 shows Eqs. (55) and (58) pLotted for prolate spheroid s of c/b ratios

of 0. 9, 0. 5, and 0. 1. The frozen fraction F is related to the 17-coordinate by

V - V  . 2
F = ° = 1.0 - 

sinh l7coshl (59)
V sinh 2l7 coshl7

Figure 9 illustrates that as c/b approaches unity, the frozen fraction and

dimensionless wall temperature approach the limiting case of a sphere . For

small va lues of c/b the limiting results are close to the c/b 0. 1 case and

cannot be accur~.tely estimated by the infinite cy linder results. For cases

where the temperature diffe rence between the wall and the freezing point

must be kept at a low va lue , such as in the rmal ene rgy storage and close

temperature control app lications, the phase-change containe r shapes shown

in Fig . 9 are not desirable because they all result in the maximum possible

tempe rature difference at the end of the phase-change process . Elliptic

cylinders . oblate spheroid s , and other slablike geometries result n lower

temperature differences for all va lues of the Biot number .

F. BICYLINDRICA L COORDINATES (i~,/ ’,  z)

The bicy lindrical coordinate system is generated by translating the two

families of orthogona l circles in the xy-p lane , shown in Fig. 10, paralle l to

the z-axis pointing into the paper . The circ les 77 = const are d rawn about two

poles x ~~~a, whi le the orthogona l family 1/’ = const has its centers on

-31-
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a -

the y-axis . The re lation between bipolar coordinates and Cartesian
coordinates is ’3

x = a sinh77/~~osh77 - cos~/’)

y = a sin lP/$ oshlJ - cos1/’)

z = z  (60)

The metric coefficients can be easily derived by the use of Eq. ( 11)

a2
g~, = g ,1, = 2 ‘ 

1 (61)
‘ “ (coshtj  - coslP)

Using the thermal resistance between two circles of the 17 = const family
- 77)/Zklir and proceeding as befo re results in

k(T fr  
- T ) t  fsinhn tanh17 ll tanh2

T J \  / 2 2

pLw~ 

= 2Bi + 2 
j  

. 
\
~csch 77 - csch ‘bo)

tanh 2J7 / 2 2
- 2 

~ ~17csch 11 - l7 csch h1~
) 

+ ctnhl7 - ctnhl7

(62)

where w is the location of the center of the 17-circle on the x-axis and r is
0 0

the radius of the circle. It can thus be shown that w = acoth77 and
r a/  Isinhll0 {. Equation (62) can be used to estimate the rat e of phase

change between eccentric isothermal cy linders that ha ve a large length-to-
diameter ratio . As 17 approaches zero , Eq. (62) estimates the rate of phase
change around a long pipe of radius r0 which is buried at a depth of w
beneath an isothermal le ve l surface which is maintained at the phase change
temperature. 
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0. ESTIMATIO N OF ERRORS

An estimate of the error caused by neg lecting the heat capa city of the

solidified (or melted) portion cannot be readily determined for the case of

the elliptic cy linder and spheroidal coordinates. Howe ve r , since the solu-

tions obtained are bracketed by, and similar to , the more common cases of

the one-dimensional slab and the cy linder , it is reasonable to assume that an

analysis of the error involved in these cases will indicate the error  involved

in the more complex geometries treated herein. Goodman ,2 using the heat-

balance integ ra l , obtained a solution for the slab problem shown in Figs. lb
and id with h cx and x = 0. His result for the location of the phase

0 0

change front is

= (~f l  + 2 Ste - 1) 1/2 
~/~~~i (6 3)

which approximates the exact solution given in Carsiaw and Jaeger 1 within
2 . 0% up to Ste = 0. 5. The comparable solution for the case of neg lig ible
heat capacity can be obtained by letting h0 approach infinity , taking x0 0 in
Eq. (8), and carrying out the simple integration. The result is

x = ~~~ ~~~ (64)

The percent error  in calculating the time required to reach a given location
of the phase-change front can be obtained by comparing Eqs . (63) and (64)
(see Fig. 11). Ignoring the heat capacity result s in change of phase times
that are a lways shorter , as expected . As long as the Stefa n number is be low
0.2, Eq. (64) underpredicts the phase-change time by less than 10%. For
Stefan numbers below 0. 05 the maximum error  is be low 3%.

Further confirmation of the validity of neg lecting the sensible heat
effects for low Stefan numbers was carried out by comparing Megerlin ’s5

result  for a cy linder , give n below, with Eqs . (38) and (39) .
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Ste Fo
~~�ø = f ~~~~~~

-- 
[\~/~1 - Bifnr ’ - 2  Ste Biln r*(2 - Bij nr *) + ( 1 - BiLnr’)] dr ’

r (65)

T - T  .~. ..~~~ 2 ~~2

- T: 
= ~~~ [r

’
~~iinr~ + ~~(r~ r~ ) (Inr ) ] (66)

where

• * 
— ____________________ -2SteBi

r - 

r~ [\J
~~TBiInr*)

2 
- ZSteBijnr (2 - Bilnr ) + (1 - BiInrl

These equations, a lthough approximate , have been shown to yield results of

high accuracy by comparison with finite difference solutions .’6 The percent

er ror  as a function of Stefan number has been calculated and is shown in

Fig. 11 with Biot numbe r as a parameter . The percent e r ro r  is defined by

l00(Ste Fo
~~�0 

- SteFo
~~~0 )/St eFo

~~�0. Lowe r Biot numbers tend to decrease

the error  in neglecting the sensible heat effects . The integ ration of Eq. (65)

was carried out numerically using Simpson ’s method with interval-halving

and a convergence criterion of 0. 5 x 10~~ between iterations . The e r ro r  in

comparing the wall temperature as predicted by Eqs. (66) and (39) is about
the same as above for Stefa n numbers up to 1.0. For la rger Stefan numbers
the error is less than the error in SteFo.

H. FLUX BOUNDARY CONDITIO N

When the heat transfer rate is specified at the container wall the heat

balance Eq. (23) simplifies considerably to

Q = PL~~~~~~~~(V~~~ - V) (67)

16Shaznsundar , N., and Sparrow, E . M., Storage of Thermal Energy by
Solid-Liquid Phase-Change- -Ter~ ?erature Drop and Heat Flux, ” Journa l of
Heat Transfe r, Trans. ASME, Se ries C, Vol . 96 , pp. 541-543 .
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for the inward phase chang e problem subject to the same assumptions stated
earl ier . - The wall  temp~~rature ~an also be readily calculated from
Q (T~~• - T

~~
) / R  by substituting q0A 0 for Q and u s i n g  the appropriate

the rmal  resistance for  the coordinate system used.  The resul ts  are sum-
marized in Tab le 1. The symbol c represents  the half th ickness  x0 for the
case of a slab , the outer radius r 0 for the cy linder and sph e re , and the
semiminor axis for  the remaining coordinate systems. The symbol F is
related to 17 by the same equations as for the convection boundary condition
cases describe d earl ier . Figure 12 show s the calculated results for
selected geometric shapes. The f rozen  fract ion is a linear function of the
dimensionless time parameter  used for all cases;  the dimensionless  tempera-
Lure d i f f e rence , howe ve r , is nonl inear  and tend s to high va lue s for some
geometries at the end of the phase change period . For app lications where
low temperature  d i f fe rences  are required , elli ptic cy linders , oblate
spheroids , and s labs are more appropriate phase change containe r shape s
than spheres , cy linde r s and prolate sphero ids . The reason is that the ther -
rnal resistance between the containe r wall and its center tends to inf ini ty  for

• certain geometries , thu s resulting in high temperature di f ferences.

Note that the equations presented in Table 1 are derived from thermal
resis tances based on isothermal boundary conditions . For uniform f lux
boundary conditions the problem become s generally two-dimensional; how-
eve r , departures from one -dimensionality are expected to be small because
of the symmetry of the problems considered herein.  The symbol ~ should be
interpreted as the area-ave raged heat t ransfe r rate so that the boundary
condition temperature is uniform . This is belie ved to be a valid approach
since in most  real situations the actua l boundary condition is not known
exactly and usually lies somewhere between the constant tempe rature and the
constant flux condition. For the case of bipo lar coordinate s where highly
asymmetric  geometries are involved , large departures from one-dimensioriali ty
are present for certain uniform flux cases as reported in Ref .  17 .

- ‘ 
‘7 Thi yagarajan , R. ,  and Yovanovich , M .M ., “Thermal Resistance of a

Buried Cy linder with Constant Flux Boundary Condition , ” Journal  of
Heat Transfe r, T rans. ASME, Serie s C, Vol . 96 , pp. 249-250 .
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I. APPROXIMATION OF TWO-DIMENSIONAL PROBLEMS

Sometimes it is possible to approximate the the rmal behavior of two-

and three-dimensiona l phase change problems by a one-dimensional analysis

using an appropriate coordinate system. Tab le 2 lists a comparison of the

wall temperature ratio and dimensionless time parameter for d i f fe ren t  f rozen

fractions as calculated by Eqs . (38) and (39) with the numerical  resul ts

obtained in Ref. 12 where an ad hoc compute r prog ram was used to predict

the rates of freezing and temperature distributions of a PCM contained in a

convective ly cooled square container. The maximum error  is 10% for thi s

case where Biot 1. 0 . The maximum e r ro r  calculated for the Biot 10. 0

and Biot = 0 . 1 cases are 17 and 2.6%, respectively. Another example is the

two-dimensional problem of a long cy linder of f inite length that can be

approximated by using prolate spheroidal coordinates where c/b  approache s

zero .

_ _  _ _ _ _ _ _ _ _ _  - - - 
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Table 2 . Comparison of Eqs . (38) and (39) with the
Numerica l Results of Ref. 12 for Biot = 1. 0

(T
~~ 

- T ) / ( T f - T )  Ste Fo

Frozen
Fraction Eq. (39) Ref. 12 Eq. (38) Ref. 12

0.097 0 .9515 0.95 0.04972 0.05

0. 189 0.9052 0. 905 0.0993 0.10

0.274 0.8620 0.865 0. 1474 0. 15

0, 428 0.7817 0.815 0.2410 0.25

0.564 0. 7067 0. 75 0.3325 0.35

0.738 0.5989 0.64 0.4658 0.50

0.878 0.4874 0.51 0.5940 0.65

0.983 0.3292 0.36 0.7199 0.80
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III . DISCUSSION AND CONC LUSIONS

A general  expression for predicting the rates of melt ing or freezing
and the result ing tempe rature histories was presented , based on the conduc-
tion shape factor equation derived in Refs . 13 or 15 and the assumptions
adopted by London and Seban7, concerning the phase change process .
Closed-form solutions were obtained for ellipti c cy linder , oblate spheroidal,
prolate spheroidal coordinates, and bicy lindrical coordinates . Arithmetic
results were presented in g raphica l form for the inward phase change prob-
lem in some of these coordinate systems. These results  are of special
interest  to the design of thermal storage equipment where containe r wall
temperatures and heat flow rate s for various container shape s are important
as is the location of the solid-liquid interface. Elliptic cy linders and oblate
spheroids of medium to high eccentricit ies that resemble a s lab-like geo-
metry were shown to give lowe r tempe rature diffe rences and more uniform
heat flow rates than cy linders , spheres , and prolate spheroids . Low Biot
numbers resulted in more unifo rm heat extraction rates and low temperature
differences;  howe ve r , longer time s are required for comp lete phase change.
The er ror  involved in neglect ing the sensib le heat effects was computed in
order to assess the limits of app li cability of the results presented. The
maximum expected er ror  was dete rmined to be less than 10% for Stefa n
numbers below 0. 2 and 3% for Stefan numbers less than or equa l to 0. 05 .

The large number of othe r app lications where the solution technique
can be used is of far greater significance than the few examples calculated
he rein. For example, freezing around a disc-shape d c ryoprobe can be esti-
mated by using the expressions presented in oblate sphe roidal coordinates in
an outwa rd direction. Freezing or melting around a fin ite p late immersed

- - in a semi-infinite medium can be estimated by the elliptic cy linder results
in an outward direction. Other cases such as melting or freezing around
buried cy linders or spheres can be treated by the use of bicylinder and bi-

spher icaL coordinate systems , respectively.
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NOMENCLATURE

A surface area of container

a foca l length of elli pse

Bi Biot number , hc/k

b semimajor axis

C specifi c heat

c semiminor axis and specific heat

F frozen fraction

Fo Fourier number , (k/p Cx2 )t

g metric coefficient

h convective heat t ransfe r coefficient

k the rmal conductivity

L latent heat of fusion
4 Q total heat t ransfe r rate

q heat t ransfer rate per unit area

R the rma l resistance

r radius of circular cy linde r or sphe re

dimensionless radius for’cy linder or sphere

j .* t ime rate of change of solid-liquid inte r face radius

Ste Stefan number , C(T fr  - T0)/ L

SteFo Product of Stefan and Fourier numbers, k(T fr 
- T )t/pLr 2

T temperature

t time
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NOMENC LATURE (Continued )

orthogonal curvilinear coordinates

x , y, z Cartesian coordinates

0 thermal diffusivity, k/PC

77,8, z elliptic cylinder coordinates

77, 8,~P oblate or prolate spheroidal coordinates

P density

I length

Subscripts

c comp lete freezing or melting

i, j , k corresponding to the coordinate i, j , or k

fr freezing (or melting) temperature

- - 
o outer wall for inward problems

inner wall for outward problems
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